PMV D20
Digital Positioner

Installation
Operation
Maintenance

Dystrybutor:

PrZEDSTAWICIEL
HANDLDWY

Biuro handlowe
Przedsiebbiorstwo Handlowo-Uslugowe
Stanistaw Zawieja
98 -200 Sieradz; ul. E. Orzeszkowej 3
NIP: 827-108-05-12

Contents

1. General information 3
1.1 Using 3
1.2 Terms concerning safety 3
1.3 Protective clothing 4
1.4 Qualified personnel 4
1.5 Installation 4
1.6 Spare parts 4
1.7 Service/repair 4
1.8 Storage 5
1.9 Valve and actuator variations 5
2. Unpacking 5
3. PMV D20 Overview 6
4. Specifications 7
4.1 Technical data 7
4.2 Mechanical switches 8
4.3 Type sign 9
4.4 D20 Model Code 10
4.5 Control Drawing 11
4.6 Certificates 12
5. Principle of operation 16
6. Mounting and installation 17
6.1 General 17
6.2 Mounting on a linear pneumatic actuator 17
6.3 Rotary actuators 19
7. Tubing positioner to actuator 22
8. Wiring and grounding guidelines 23
8.1 Grounding screw 23
8.2 Electromagnetic compability 24
8.3 Compliance voltage 24
9. Operation 25
9.1 Operation 25
9.2 Start up 25
9.3 Calibration 25
9.4 Set of Direct or Reverse action 26
9.5 Show gain setting 26
9.6 Change gain setting 27
10. Limit switches \& 4-20 mA transmitter (Optional) 28
10.1 General 28
10.2 Model selection 28
10.3 Principle of operation 28
10.4 Installation 28
10.5 Calibration of 4-20 mA input signal and/or 4-20 mA feedback transmitter 29
11. Trouble shooting 30
11.1 PMV D20 normal operation 30
11.2 PMV D20 error codes 30
11.3 PMV D20 symptoms and solutions 31
12. Spare parts 32

1. General information

1.1 Using

The following instructions are designed to assist in unpacking, installing and performing maintenance as required on FLOWSERVE products. Product users and maintenance personnel should thoroughly review this bulletin prior to installing, operating or performing any maintenance.

In most cases FLOWSERVE valves, actuators and accessories are designed for specific applications (e.g. with regard to medium, pressure, temperature). For this reason they should not be used in other applications without first contacting the manufacturer.

1.2 Terms concerning safety

The safety terms DANGER, WARNING, CAUTION and NOTE are used in these instructions to highlight particular dangers and/ or to provide additional information on aspects that may not be readily apparent.

DANGER: indicates that death, severe personal injury and/or substantial property damage will occur if proper precautions are not taken.

WARNING: indicates that death, severe personal injury and/or substantial property damage can occur if proper precautions are not taken.

CAUTION: indicates that minor precautions are not taken.

NOTE: indicates and provides additional technical information, which may not be very obvious even to qualified personnel.

Compliance with other, not particularly emphasised notes, with regard to transport, assembly, operationand maintenance and with regard to technical documentation (e.g. in the operating instruction, product documentation or on the product itself) is essential, in order to avoid faults, which in themselves might directly or indirectly cause severe personal injury or property damage.

1.3 Protective clothing

FLOWSERVE products are often used in problematic applications (e.g. extremely high pressures, dangerous, toxic or corrosive mediums). In particular valves with bellows seals point to such applications. When performing service, inspection or repair operations always ensure, that the valve and actuator are depressurised and that the valve has been cleaned and is free from harmful substances. In such cases pay particular attention to personal protection (protective clothing, gloves, glasses etc.).

1.4 Qualified personnel

Qualified personnel are people who, on account of their training, experience and instruction and their knowledge of relevant standards, specifications, accident prevention regulations and operating conditions, have been authorised by those responsible for the safety of the plant to perform the necessary work and who can recognise and avoid possible dangers.

1.5 Installation

DANGER: Before installation check the order-no, serial-no. and/ or the tag-no. to ensure that the valve/actuator is correct for the intended application.
Do not insulate extensions that are provided for hot or cold services.

Pipelines must be correctly aligned to ensure that the valve is not fitted under tension.

Fire protection must be provided by the user.

1.6 Spare parts

Use only FLOWSERVE original spare parts. FLOWSERVE cannot accept responsibility for any damages that occur from using spare parts or fastening materials from other manufactures. If FLOWSERVE products (especially sealing materials) have been on store for longer periods check these for corrosion or deterioration before using these products. Fire protection for FLOWSERVE products must be provided by the end user.

1.7 Service / repair

To avoid possible injury to personnel or damage to products, safety terms must be strictly adhered to. Modifying this product, substituting nonfactory parts, or using maintenance procedures other than outlined in this instruction could drastically affect performance and be hazardous to personnel and equipment, and may void existing warranties. Between actuator and valve there are moving parts. To avoid injury FLOWSERVE provides pinch-pointprotection in the form of cover plates, especially where side-mounted positioners are fitted. If these plates are removed for inspection, service or repair special attention is required. After completing work the cover plates must be refitted.

Apart from the operating instructions and the obligatory accident prevention directives valid in the country of use, all recognised regulations for safety and good engineering practices must be followed.

WARNING:

Before products are returned to FLOWSERVE for repair or service FLOWSERVE must be provided with a certificate which confirms that the product has been decontaminated and is clean. FLOWSERVE will not accept deliveries if a certificate has not been provided (a form can be obtained from FLOWSERVE).

1.8 Storage

In most cases FLOWSERVE products are manufactured from stainless steel. Products not manufactured from stainless steel are provided with an epoxy resin coating. This means that FLOWSERVE products are well protected from corrosion. Nevertheless FLOWSERVE products must be stored adequately in a clean, dry environment. Plastic caps are fitted to protect the

2. Unpacking

Each delivery includes a packing slip. When unpacking, check all delivered valves and accessories using this packing slip.
flange faces to prevent the ingress of foreign materials. These caps should not be removed until the valve is actually mounted into the system.

1.9 Valve and actuator variations

These instructions cannot claim to cover all details of all possible product variations, nor in particular can they provide information for every possible example of installation, operation or maintenance. This means that the instructions normally include only the directions to be followed by qualified personal where the product is being used for is defined purpose. If there are any uncertainties in this respect particularly in the event of missing product-related information, clarification must be obtained via the appropriate FLOWSERVE sales office.

Report transport damage to the carrier immediately.

In case of discrepancies, contact your nearest FLOWSERVE location.

3.PMV D20 overview

The PMV D20 is a two-wire loop powered, 4-20 mA input digital valve positioner.

The PMV D20 positioner controls actuators with linear and rotary mountings.

The PMV D20 is completely powered by the 4-20 mA input signal. The minimum input signal required to function is 3,6 mA . As an option the D20 can be equipped with HART protocol to allow bidirectional communication.

Since the positioner is insensitive to supply pressure changes and can handle supply pressures from 1,5 to 6 barg (22 to 105 psig), a supply regulator is usually not required; however, in applications where the supply pressure
is higher than the maximum actuator pressure rating a supply regulator is required to lower the pressure to the actuator's maximum rating (not to be confused with operating range). A coalescing air filter is recommended for all applications due to the close tolerances in the positioner.

PMV D20 positioner accessories: Optional analog feedback system as well as limit switch unit and a directly attachable double acting module.

NOTE: The air supply must conform to ISA 7.0.01 orIEC 770 (a dew point at least $10^{\circ} \mathrm{C} / 18^{\circ} \mathrm{F}$ below ambient temperature, particle size below five microns one micron recommended - and oil content not to exceed one part per million).

4. Specifications

4.1 Technical data

Input signal
Current supply min.
Current supply Max.
Load Standard
Load HART
Voltage dropStandard
Voltage dropHART
Angle of rotation min
Angle of rotation Max
Air supply range
Out put
Air supply quality
Air supply effect
Ingress protection
Operating humidity
Air connections
Cable entry
Terminals
Operating Temperature
Storage temperature
Air delivery capacity
Air delivery capacity Double acting
Air consumption Single acting
Air consumption Double acting
Cv air delivery Single acting
Cv air delivery Double acting
Cut off function
Linearity
Sensitivity
Resolution
Repeatability
Hysteresis + dead band
Temp effect
Mounting position effect
CE
Approvals
Certificate nr
Housing material
Surface treatment
Soft goods
Weight

4-20 mA
3,6 mA
150 mA
400 ohm at 20 mA
470 ohm at 20 mA
8 VDC at 20 mA
9.4 VDC at 20 mA
$0-40^{\circ}$
$0-90^{\circ}$
1.5-6 bar
$0-100 \%$ of air supply pressure
Free from oil, dust and moisture IEC 770, ISA 7.0.01
$<0.1 \%$ FS for 10% pressure change at 6 Bar
IP66 / Nema 4X
0-100\% rh non-condensing
1/4" NPT
2 x 1/2" or 2 x M20x 1,5
Screw terminals $2,5 \mathrm{~mm}^{2}$ (AWG 14)
-20 to $+85^{\circ} \mathrm{C}-40$ to $+85^{\circ} \mathrm{C}$ (optional)
-40 to $+85^{\circ} \mathrm{C}$
$7 \mathrm{Nm}^{3} / \mathrm{h}$ @ 6 bar (3 bar diff pressure)
$7 \mathrm{Nm}^{3} / \mathrm{h}$ @ 6 bar (3 bar diff pressure)
0,120 Nm³/h @ 6 bar
0,120 Nm³/h @ 6 bar
0,12
0,12
Close 0.5\% Open 99.5\%
<1\%
<0.05\%
<0,1\%
<0.2\%
<0.5\%
<0.1\%/10K
<0,2\%
93/68/EEC, 2004/108/EEC, 2006/95/EEC
Ex II G Ex ia IIC T4 Ta: $85^{\circ} \mathrm{C}$
Nemko 08ATEX1362X
Die cast Aluminium
Powder coating
Nitrile
$1,5 \mathrm{~kg}$

4.2 Mechanical switches

Type
Size
Rating
Mechanical life
Namur sensors
Type
Load current
Voltage range
Hysteresis
Temp range
Namur sensors
Type
Normal Voltage
Load current
Voltage range
Hysteresis (max)
Temp range
Namur sensors
Type
Normal Voltage
Load current
Voltage range
Hysteresis (max)
Temp range

Namur sensors

Type
Normal Voltage
Load current
Voltage range
Hysteresis (max)
Temp range

SPDT
Sub Sub miniature
3A, 125 VAC / 2A, 30VDC
$>1 \times 10^{6}$ operations

P+F NJ2 V3 N Inductive DIN 19234
$<1 \mathrm{~mA}>3 \mathrm{~mA}$
5-25 VDC
3-15\% (5\% typical)
-25° to $+100^{\circ} \mathrm{C}\left(-248^{\circ}\right.$ to $\left.373^{\circ} \mathrm{F}\right)$

P+F SJ2-N
8 VDC
$1 \mathrm{~mA}<1<3 \mathrm{~mA}$
(5-25 VDC)
0.2\%
-25° to $+100^{\circ} \mathrm{C}\left(-248^{\circ}\right.$ to $\left.373^{\circ} \mathrm{F}\right)$

P+F SJ2-SN
8 VDC
$1 \mathrm{~mA}<1<3 \mathrm{~mA}$
5-25 VDC
(0.2\%)
-40° to $+100^{\circ} \mathrm{C}\left(-233^{\circ}\right.$ to $\left.373^{\circ} \mathrm{F}\right)$

P+F SJ2-S1N
8 VDC
$1 \mathrm{~mA}<1<3 \mathrm{~mA}$
5-25 VDC
0.2\%
-25° to $+100^{\circ} \mathrm{C}\left(-248^{\circ}\right.$ to $\left.373^{\circ} \mathrm{F}\right)$

Proximity switches

Type
Rating
Voltage max
Current max
Contact resistance max

SPDT
10W
200VDC
500mA
0.2 ohm

Operating time $\quad 1.0 \mathrm{~ms}$
Transmitter
Power supply
12-28 VDC
Output
Resolution
1-22 mA
Linearity
Load impedance
0.1\%
$\pm 0.5 \%$
600 ohm at (12 VDC and 20mA)

Alarm Output

Supply
Output

3-28 VDC
20mA @ 24 VDC

4.3 Type sign

4.4 D20 Model Code

$\mathrm{A}=$	Model no
	D20 Digital compact positioner, General purpose, LED status
$B=$	Approval, Certificate
	D General purpose version
	Intrinsically safe version ATEX
$\mathrm{C}=$	Connections Air, Electrical
	M 1/4" NPT air, M20 x 1,5 electrical $\times 2$
	N 1/4" NPT air, 1/2" NPT electrical x 2
$\mathrm{D}=$	Housing/Surface treatment
	U Aluminium/Powder epoxy, black
$E=$	Function
	S Single acting
	D Double acting, incl gauges (2) Stainless/Brass
$F=$	Mounting options / Spindle
	09 Double D type, adaptor spindle
	12 Flowtop, D-style+ nut, direct mounting, Kit 30144 include
	23 VDI/VDE 3845 rotary, Mounting kit not included
	39 IEC 534-6, Flat D type, nut incl. Mounting kit not included
	40 VDI/VDE 3847 Linear, Flat D, Mounting kit 30145 included
$\mathrm{G}=$	Cover and Indicator
	PVA PMV,Black cover, Arrow indicator
	PVB PMV, Black cover, No indicator
	PVD PMV, Black cover, Dome indicator
$\mathrm{H}=$	Temperature/seals
	Z Standard $-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$
	Q Low temp $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-38^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$
$1=$	Input signal/Protocol
	$4 \quad 4-20 \mathrm{~mA} / \mathrm{none}$
	$5 \quad 4-20 \mathrm{~mA}$, / HART
$\mathrm{J}=$	Feedback option, 4-20 mA transmitter, switches
	X No feedback option
	T $\quad 4-20 \mathrm{~mA}$ transmitter only
	S Limit switches Mechanical SPDT + 4-20mA
	$\mathrm{N} \quad$ Namur V3 type sensor, P+F NJ2-V3-N + 4-20mA
	P Limit switches Proximity SPDT + 4-20mA
	4 Slot type Namur sensor, P+F SJ2-S1N + 4-20mA
	5 Slot type Namur sensor, P+F SJ2-SN + 4-20mA
	6 Slot type Namur sensor, P+F SJ2-N + 4-20mA
$\mathrm{K}=$	Options, Add in electronics
	0 Standard diagnostics
$L=$	Accessories
	X No accessories
	M Gauge block 1/8" G ($2 \times$ gauges included)
	N Gauge block 1/8" NPT (2 x gauges included)

4.5 Control Drawing

Always see www.pmv.nu for latest revision.

4.6 Certificates

CENELEC EN 60079-0: 2006, CENELEC EN 60079-11: 2007, CENELEC EN 60079-26: 2004
[10] If the sign " X " is placed after the certificate number, it indicates that the equipment or protective system is subject to special conditions for safe use specified in the schedule to this certificate.
[11] This EC-TYPE EXAMINATION CERTIFICATE relates only to the design, examination and tests of the specified equipment or protective system in accordance to the directive 94/9/EC. Further requirements of the Directive apply to the manufacturing process and supply of this equipment or protective system. These are not covered by this certificate.
[12] The marking of the equipment or protective system shall include the following:
\&x
II 1G
Ex ia IIC T4 Ta: $85^{\circ} \mathrm{C}$

Oslo, 2008-12-12

Rolf Hoel
Certification Manager, Ex-products

This certificate may only be reproduced in its entirety and without any change, schedule included.			
Postal address:	Office address:	Telephone:	Enterprise number:
P.OBox 73 Blindern	Gaustadalien 30	+4722960330	NO 974404532
N-0314 OSLO, NORWAY	0373 OSLO	Fax:	
		+4722960550	

[13] Schedule

[14] EC-TYPE EXAMINATION CERTIFICATE No Nemko 08ATEX1362X

[15] Description of Equipment or Protective System
The D20-series digital positioners designed primarily to control modulating valves. The positioner can be used with single action actuators with either rotary or linear movement.
The positioner comprises:
-electronic board with microprocessor, display etc,
-pneumatic valve block,
-positional feedback with potentiometer
-the positioner can also be equipped with modules for feedback, limit switches, and a pressure gauge block. The modules can be factory assembled before delivery or fitted later. The modules for feedback and limit switches can contain the following. Feedback $4-20 \mathrm{~mA}$ and one of the following functions:
Two mechanical switches: Two reed switches: Two inductive sensors.
-option with remote unite with potentiometer

Model code overview

D20 series digital positioners.
The series comprises the three main models D20, D21, D22 with options as specified in the model code.
D20 Digital compact positioner, General purpose, LED status
D21 Digital positioner, LCD display, LED status
D22 Digital positioner, full LCD menu, LED status

D 2x ABCD-EFFGGG-HIJKL

A: A character or digit indication of the configuration of the digital positioner.
B: I : Intrinsically Safe
C: A letter indicating the size threaded entries for electrical and air connections.
D: Housing / Surface treatment.
E: Function.
F: Mounting options / Spindle.
G: Cover and indicator options.
H: Temperature / seals.
I: Input signal / Protocol: $4 * 20 \mathrm{~mA} /$ Hart, Profibus / Fieldbus.
4: $4-20 \mathrm{~mA}$ / none
5: $4-20 \mathrm{~mA} /$ Hart
P: Profibus
F: Foundation Fieldbus
J: Feedback options.
T $4-20 \mathrm{~mA}$ transmitter only
S Limit switches Mechanical SPDT $+4-20 \mathrm{~mA}$
N Namur V3 type sensor, $\mathrm{P}+\mathrm{F}$ NJ2-V3-N $+4-20 \mathrm{~mA}$
P Limit switches Proximity SPDT $+4-20 \mathrm{~mA}$
4 Slot type Namur sensor, $\mathrm{P}+\mathrm{F}$ SJ2-S1N $+4-20 \mathrm{~mA}$
5 Slot type Namur sensor, P+F SJ2-SN $+4-20 \mathrm{~mA}$
6 Slot type Namur sensor, $\mathrm{P}+\mathrm{F}$ SJ2-N $+4-20 \mathrm{~mA}$
K : options, add in electronics
L: Accessories

This certificate may only be reproduced in its entirety and without any change, schedule included.

Postal address:	Offce address:	Telephone:	Enterprise number:
P.O.Box 73 Blindern	Gaustadalleen 30	+4722960330	NO 974404532
N-0314 OSLO, NORWAY	0373 OSLO	Fax:	+4722960550

D20 Safety Data for External Connections
4-20mA input signal \& Hart . Terminals no. 1, 2

Maximum input voltage.	$\mathrm{U}_{\mathrm{i}}:$	28 V
Maximum input carren.	$\mathrm{I}_{\mathrm{i}}:$	93 mA
Maximum input power.	$\mathrm{P}_{\mathrm{i}}:$	653 mW
Maximum internal capacitance.	$\mathrm{C}_{\mathrm{i}}:$	$11,28 \mathrm{nF}$
Maximum internal inductance.	$\mathrm{L}_{\mathrm{i}}:$	$11,28 \mu \mathrm{H}$

Switches, Mechanical or Proximity. Terminals 3-5, 6-8 or 4-5, 7-8

Maximum input volage.	$\mathrm{U}_{\mathrm{l}}:$	28 V
Maximum input corrent.	$\mathrm{I}_{i}:$	45 nA
Maximum input power.	$\mathrm{P}_{\mathrm{i}}:$	315 mW
Maximum internal capacitance.	$\mathrm{C}_{\mathrm{i}}:$	1 nF
Maximum internal inductance.	$\mathrm{L}_{\mathrm{i}}:$	$1 \mu \mathrm{H}$

Switches, Mechanical or Proximity with isolator barriers. Terminals 3-5, 6-8

Maximum input voltage.	$\mathrm{U}_{\mathrm{i}}:$	$10,6 \mathrm{~V}$
Maximum input current.	$\mathrm{I}_{\mathrm{i}}:$	$29,7 \mathrm{~mA}$
Maximum input power.	$\mathrm{P}_{\mathrm{i}}:$	79 mW
Maximum internal capacitance.	$\mathrm{C}_{\mathrm{i}}:$	lnF
Maximum internal inductance.	$\mathrm{L}_{\mathrm{i}}:$	$1 \mu \mathrm{H}$

Namur switch and isolator barrier. Terminals 3-4, 6-7

Maximum inpuf voltage.	$\mathrm{U}_{\mathrm{i}}:$	$10,6 \mathrm{~V}$
Maximum inpuf cutrent.	$\mathrm{I}_{\mathrm{i}}:$	$29,7 \mathrm{~mA}$
Maximum input power.	$\mathrm{P}_{\mathrm{l}}:$	79 mW
Maximum internal capacitance.	$\mathrm{C}_{\mathrm{i}}:$	40 nF
Maximum internal inductance.	$\mathrm{L}_{\mathrm{i}}:$	$100 \mu \mathrm{H}$

4-20mA Output - Terminals $9-10$

Maximum input voltage.	Ui:	28 V
Maximum input current.	Ii:	93 mA
Maximum input power.	pi:	653 mW
Maximum internal capacitance.	Ci:	$16,4 \mathrm{nF}$
Maximum internal inductance.	Li:	$11,3 \mathrm{kH}$

Alarm. Terminals 11-12

Maximum input voltage.	$\mathrm{U}_{\mathrm{l}}:$	28 V
Maximum input current.	$\mathrm{I}_{\mathrm{i}}:$	45 mA
Maximum input power.	$\mathrm{P}_{\mathrm{i}}:$	315 mW
Maximum internal capacitance.	$\mathrm{C}_{\mathrm{i}}:$	$5,7 \mathrm{nF}$
Maximum intenal inductance.	$\mathrm{L}_{\mathrm{i}}:$	$11,3 \mu \mathrm{H}$

This certificate may only be reproduced in its entirety and without any change, schedule included.				
Postal address:	Offce address:	Telephone:	Enterprise number:	
P.O.Box 73 Blindern	Gaustadallen 30	+4722960330	NO 974404532	
N-0314 OSLO, NORWAY	0373 OSLO	Fax:		
		+4722960550		

Remote Unit

Remote unit is connected to terminals 3-4-5.
The remote unit comprises a potentiometer mounted in an aluminium enclosure.
The remote unit may be connected to D20 with a cable up to 10 m length. The maximum output power at terminals 3-4-5 is Po $0,38 \mathrm{~W}$.

Ingress Protection Code

IP 66/67 according to EN 60529
Type 4X according to NEMA 250

Ambient temperature

Temperature range: $-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$
[16] Report No. 118427
Descriptive Documents technical file content "Technical File contents intrinsically safe (ia) certification of D20 Rev. A Dated 2008-12-08.
[17] Special Conditions for Safe Use

Special Conditions for Safe Use

1. The enclosure is made of aluminium and impact or friction calased by external objects shall be avoided in the application.
2. The above data for the diode safety barriers assumes linear resistive output characteristics.
3. The installation and connection information according to the Control drawing $3-86$ has to be taken into account.
[18] Essential Health and Safety Requirements See item 9

Postal address:	Office address:	Telephone:	Enterprise number:
P.O.Box 73 Blindern	Gaustadalléen 30	+4722960330	NO 974404532
N-0314 OSLO, NORWAY	0373 OSLO	Fox: $+4722960550$	

5. Principle of operation

The PMV D20 positioner is a digital positioner with various options. The positioner consists of three main modules:

1. The microprocessor-based electronic control module includes direct local user interface switches
2. The piezo valve-based electropneumatic converter module
3. The infinite resolution valve position sensor.

The basic positioner operation is best understood by referring to figure 1 . The complete control circuit is powered by the two-wire, $4-20 \mathrm{~mA}$ command signal. The analog 4-20 mA command is passed to the microprocessor, where it is compared to the measured valve stem position. The control algorithm in the processor performs control calculations and produces an output command to the piezo valve, which drives the pneumatic
amplifier. The position of the pilot valve in the pneumatic amplifier is measured and relayed to the inner loop control circuit. This two-stage control provides for more responsive and tighter control than is possible with a single stage control algorithm. The pneumatic amplifier controls the airflow to the actuator. The change of pressure and volume of the air in the actuator causes the valve to stroke. As the valve approaches the desired position, the difference between the commanded position and the measured position becomes smaller and the output to the piezo is decreased. This, in turn, causes the pilot valve to close and the resulting flow to decrease, which slows the actuator movement as it approaches, the new commanded position. When the valve actuator is at the desired position. the pneumatic amplifier output is held at zero, which holds the valve in a constant position.

6. Mounting and installation

6.1 General

Before starting installation, inspect the digital positioner for any transit damages. The PMV D20 positioner is installed with a mounting kit (according to NAMUR specification) to the left-hand actuator support rod.

Generally, the unit can be installed in any mounting position. The stroke feed-back is realized by a follower arm and stem clamps.

The mounting of rod actuators (according
to NAMUR) is described in Figure 3.
For the two mounting possibilities of cast yoke actuators (according to NAMUR, IEC 534 part 6) refer to Figure 5.

After installation, ensure all screw connections are tightened correctly and all moving parts are free from excessive friction.

Tighten front cover screws to 0.65 Nm to ensure IP rating.

Figure 2. Dimensional drawing

6.2 Mounting of the PMV D20 positioner on a linear pneumatic actuator (NAMUR / IEC 534 part 6)

 (See Figure 3)The mounting of a rod actuator kit (according to IEC 534 part 6) is described in an example by using the following equipment:

Valve: Standard globe valve or equivalent
Actuator: Single-acting pneumatic actuator
Positioner: PMV D20 with NAMUR mounting kit.

Pre-assembly: Valve with actuator (valve stroke is matched with the actuator stroke).

For mounting, proceed as follows:
Mounting the Follower Arm (Figures 3 and 6)

1. Unscrew the lock nut for the follower arm attachment.
2. Place the follower arm on the shaft at the back of the positioner and fasten it with the lock nut. The follower pin should point back from the positioner.

CAUTION: Maximum torque $0,25 \mathrm{Nm}(0,18 \mathrm{ft}-\mathrm{lbs})$.

Mounting the stem clamp bracket and take-off arm (Figure 3)

1. Attach the stem clamp bracket to the stem clamp and fasten it with two hexagon socket screws and lock washers.
2. Attach the take off arm to the stem clamp bracket and fasten it with a hexagon socket capscrew and a washer. Ensure the take-off arm slot is centered.

Mounting the positioner (Figure 3)

1. Adjust the actuator to mid-stroke.
2. Pre-assemble the mounting bracket on the left actuator
leg hand-tight with two U-bolts, nuts and lockwashers.
3. Attach the positioner to the preassembled mounting bracket and fasten it with two hexagon head screws and two lock washers. Check that the follower pin is inserted in the slot of the take-off arm and the follower arm is positioned at a right angle to the outer edge of the positioner.

4. Tighten all screws and nuts.

NOTE: A slight unsymmetrical mounting increases the linearity deviation but does not affect the performance of the device. Depending on the actuator size and stroke it may be necessary to flip the take-off arm (Figure 3) by 180° and attach it to the opposite side of the stem clamp bracket.

Follower pin adjustment (Figure 4)

The positioner follower pin must be adjusted to match the valve stroke in the following manner:

1. Adjust the follower pin (STROKE +10 mm) as indicated on the follower arm's embossed scale (Figure 6).
2. Exhaust the actuator.
3. Loosen the follower pin and shift it along the follower arm until the control marking on the feedback gear (Figure 4) is horizontal (points to the center of the feedback potentiometer). Fasten the follower pin in this position.
4. Adjust the actuator to full stroke and check the follower pin adjustment the same way as described in step 3. As the actuator strokes, the rotation of the feedback gear should be between the inner control markings. If the length of rotation is outside the control markings, adjust the

Figure 3. Mounting on a Rod Actuator (IEC 534 part 6)
follower pin farther out on the feedback lever to reduce the angle of rotation.

NOTE: Stroke the actuator carefully and ensure the follower arm does not interfere with valve parts, actuator or positioner. Do not adjust the follower pin too near to the slot end of the take-off arm.

The minimum lateral distance should be approximately 5 mm (0,2 inches) to pre-
vent bending of the feed-back mechanisim.

6.3 Rotary actuators

 Mounting the PMV D20 positioner on a quarter-turn actuator (closed or open by spring)The mounting of a pneumatic double-piston part-turn valve actuator (in accordance with VDI/VDE 3845) is described as an example by using the following equipment:

Quarter-turn valve actuator: Rack \& pinion or scotch yoke, closed or open by spring.

Rotary actutaors VDI/VDE 3485 (Namur)

Mount bracket 1 to positioner. Secure with $4 \times \mathrm{M} 6$ screws 2.

Fit positioner on actuator and secure with 4 x screws 3 .

Install tubing 4 between actuator and positioner.
See section 7.
Linear actuator "Flow act" (Direct mounting, integrated tubing.

Check O-rings, Install bracket 1 to posi-
 tioner and secure with screws.

Fit pin on valve stem.
Fit lever arm to positioner shaft.
Fit and check O-rings and positioner to actuator and secure with $2 \times$ screws 2.

No tubing needed, it's integrated with actuator, fit plug in positioner out port.

Linear actuator VDI/VDE 3847

(Direct mounting, integrated tubing.
Check O-rings, Install bracket 1 to positioner and secure with 2 x screws 2.

Fit pin on valve stem.
Fit lever arm to positioner shaft.
Fit and check O-rings and positioner to actuator and secure with $2 \times$ screws 3 .

No tubing needed, it's integrated with actuator.

Figure 4. Basic Adjustment for a Linear Pneumatic Actuator

Figure 6. Follower Arm (standard)

Figure 5. Yoke Actuator Mounting (according to IEC 534 part 6)

Mounting the positioner (Figure 7)
Place the positioner (1) onto the mounting block (2) of the actuator using four screws (3) Ensure the coupler fits
on to the shaft of the quarter-turn connection on the part-turn valve actuator.

7. Tubing positioner to actuator

After mounting has been completed, tube the positioner to the actuator using the appropriate compression fitting connectors:

Air connections: 1/4" NPT (standard air connection).

Auxiliary power: Pressurized air or permissible gases, free of moisture and dust in according with IEC 770 or ISA 7.0.01.

Pressure range: 1,5-6 bar (30-90 psi).
For connecting the air piping, the following notes should be observed:

1. The positioner passageways are equipped with filters, which remove medium and coarse size dirt from the pressurized air. If necessary, they are easily accessible for cleaning.
2. Supply air should meet IEC 770 or ISA 7.0.01 requirements. A coalescing filter should be installed in front of the supply air connection (Figure 8). Now connect the air supply to the filter, which is connected to the PMV D20 positioner.
3. With a maximum supply pressure of 6 bar (102 psi) a regulator is not required.
4. With an operating pressure of more than 6 bar (90 psi), a reducing regulator is required.

The flow capacity of the regulator must be larger than the air consumption of the positioner (7 Nm ${ }^{3} / \mathrm{h}$ @ 6 bar / 4,12 scfm @ 90 psi).
5. Connect the outlet connector (Figure 8) of the positioner with tubing, independent of the action (direct or reverse).

ISO 8573 2.2.2
ISA 7.0.01.-1996 Class 2

8. Wiring and grounding guidelines

Electrical connections: signal cable with cable passage ($1 / 2$ " NPT, or M20 x 1,5) to terminals $2 \times 2,5 \mathrm{~mm}$.

Input signal: 4-20 mA
NOTE: Observe the minimum requirements of voltage and equivalent electrical load:

8 VDC at 20 mA
The performance is ensured only for a minimum input current of $3,6 \mathrm{~mA}$.

For wiring, the following notes should be observed:

NOTE: The input loop current signal to the PMV D20 should be in shielded cable. Shields must be tied to a ground at only one end of the cable to provide a place for environmental electrical noise to be removed from the cable. In general, shield wire should be connected at the source. (Figure 8).

Connect the 4-20 mA current source to terminals +1 and -2 , see connection table.

Figure 8. Connections

Connection	Description
+1	Input $+4-20 \mathrm{~mA}$ Input $-4-20 \mathrm{~mA}$
-2	Pneumatic output signal (outlet)
$\mathbf{~}$	
\downarrow	Air supply

8.1 Grounding screw

The grounding screw, located inside the positioner cover, should be used to provide the unit with an adequate and reliable earth ground reference. This ground should be tied to the same ground as the electrical conduit. Additionally, the electrical conduit should be earth grounded at both ends of its run. The grounded scrrew must not be used to termingate signal shield wires.

8.2 Electromagnetic compatibility

The PMV D20 digital positioner has been designed to operate correctly in electromagnetic (EM) fields found in typical industrial environments. Care should be taken to prevent the positioner from being used in environments with excessively high EM field strengths (greater than $10 \mathrm{~V} / \mathrm{m}$). Portable EM devices such as hand-held two-way radios should not be used within 30 cm of the device.

Ensure proper wiring and shielding
techniques of the control lines, and route control lines away from electro-magnetic sources that may cause unwanted noise.

An electromagnetic line filter can be used to further eliminate noise.

In the event of a severe electrostatic discharge near the positioner, the device should be inspected to ensure correct operability. It may be necessary to recalibrate the PMV D20 positioner to restore operation.

Figure 9. Compliance voltage

8.3 Compliance voltage

Output compliance voltage refers to the voltage limit the current source can provide. A current loop system consists of the current source, wiring resistance, barrier resistance (if present), and the PMV D20 impedance.

The PMV D20 requires that the current loop system allow for a 8.0-9.4 VDC drop across the positioner at maximum loop current.

CAUTION: Never connect a voltage source directly across the positioner terminals. This could cause permanent circuit board damage.

In order to determine if the loop will support the PMV D20, perform the following calculation:

Voltage=Compliance Voltage(@Current ${ }_{\text {Max }}$)

- Current $_{\text {max }}\left(\mathrm{R}_{\text {barier }}+\mathrm{R}_{\text {wier }}\right)$

To support the PMV D20 the calculated voltage must be greater than 9.4 VDC for D20 HART and 8 VDC for non-HART.

Example: DCS Compliance Voltage = 19 V
$R_{\text {barier }}=300 \Omega$
$R_{\text {wire }}=25 \Omega$

This system will support the PMV D20, as the voltage 12.5 V is greater than the required 8VDC for non-HART and 9.4VDC for HART.

CURRENT $_{\text {MAX }}=20 \mathrm{~mA}$
Voltage $=19 \mathrm{~V}-0.020 \mathrm{~A}(300 \Omega+25 \Omega)=\underline{12.5 \mathrm{~V}}$

9. Operation

9.1 General

The D20 is operated by the yellow button.
Depending on desired action, press the button:

- during a number of seconds (Ex: ${ }_{5} \bigcirc_{\text {sec }}$) or
- a number of times. (Ex: $\bigcirc_{\mathrm{x} 3}^{\bigcirc}$)

All operation steps are indicated by lit or flashing LED(s).

9.2 Startup

Connect Air supply and a mA-simulator to the positioner.

Warning: During calibration, the actuator may stroke unexpectedly.

9.3 Calibration

Apply 4 mA current as input signal.
Press the button for 5 sec . (Re-
 lease the button when the three LED:s start to flash alternately).
5 sec . The calibration starts, the actuator goes go to max. and min. position and calculates the control parameters.

The Calibration procedure will take between 30 seconds and some minutes depending on actuator size.

The three LED:s will flash alternately during calibration.

After calibration all the three LED:s are lit for a moment.

A successfull calibration is indicated by yellow or green LED:

G Green LED flashes = In service Yellow LED flashes = In service.

- The unit vents in max or min position.
An unsuccessfull calibration is indicated by error codes:

R D20 does not reach the setpoint.
For other indications, see Error codes, page 30.

9.4 Set of Direct or Reverse action

Note! For safety reason, this operation has to be done max 5 minutes after calibration. If time has run out, or if power is disconnected during the five minutes, perform a new calibration, before changing the direction.

Run 4 mA . If valve is in right position, then check the position over the whole range ($8,12,16$ and 20 mA).
x3

If the direction need to be changed: press the button 3 times and the direction will change.

Check operation at 4-8-12-16 and 20 mA

9.5 Show gain setting

If the actuator position is unstable or selfoscillating after calibration, the gain can be adjusted.

Gain can be set from A (lowest) to \mathbf{G} (highest). Default is \mathbf{D}.

To show the current gain setting, press the button four times.

To indicate the current setting, the LEDs flashes according to the following:

	YRR	
LEDs show:	$\bigcirc \bigcirc$	G (Highest)

LEDs show: $\begin{gathered}\text { YRY } \\ \text { OOO } \\ \text { YRG }\end{gathered}$
LEDs show: $\underset{\bigcirc-\mathrm{ORG}}{ } \mathrm{O}$
LED show: $\quad \underset{\bigcirc}{\mathrm{Y}} \mathrm{O} \quad \mathrm{D}$ Default
LEDs show: $\quad{ }^{\mathrm{YGGG}} \mathrm{C}$
$\begin{array}{lll}\text { LED show: } & \stackrel{Y G Y}{O O O} & B \\ \text { LED show: } & \stackrel{Y G R}{O O O} & \mathrm{~A} \text { (Lowest) }\end{array}$
The gain code sequence is repeated 5 times.

9.6 Change of gain setting

To lower the gain, press the button: 7, 6 or 5 times ($5=$ lowest).

To increase the gain (if actuator is moving to slow).

Press the button: 9, 10 or 11 times (11= highest) to increase the gain.

The LED:s flashes alternately when the button is pressed. After gain change the LED: s show the gain code (see 9.3) five times.

The default value after first calibration is D.

After this, the gain settings are finished.

10. Limit switches \& 4-20 mA transmitter (Optional)

Caution!

The installation of electrical equipment in hazardous areas must comply with the procedures contained in the certificates of conformity. Country specific regulations may apply.

Electrical safety is determined only by the power supply device.

10.1 General

D20 can be equipped with optional plug in modules for limit switches and/or 4-20 mA feedback transmitter

10.2 Model selection

See D20 model code

10.3 Priciple of operation

The stroke of the actuator/valve is picked up by the potentiometer inside the D20. Movement is transferred from actuator via lever or shaft coupling. Cams/vanes mounted on the positioner shaft actuate limit switches 1 and 2 . The switching point can be adjusted on each cam/vane.

The position transmitter converts actual position into a $4-20 \mathrm{~mA}$ output signal. This loop requires an external 12-25 VDC power supply.

10.4 Installation

Caution! Turn off power and air supply before starting the installation.

Important!

For D20 installed in hazardous areas, maintenance and repair must only to be made by authorized and trained staff.

-Remove cover, indicator if present and inner plastic cover.
-Check that spacers are installed on the printed circuit board.
-Carefully install feedback board into its position on the pins.
-Secure it with two (2) screws.
-Install cam assembly on the shaft, if feedback card has mechanical micro switches, be careful to not damage switch arms.
-Install plastic inner cover.
-Adjust cams/vanes to ensure proper switching.
-Secure cam/van position by locking them with two (2) screws.
-Calibrate 4-20 mA transmitter, (see next page).
-Install cover.

10.5 D20 Calibration of 4-20 mA input signal and/or 4-20mA feedback transmitter

- Press and hold button while switching on power to the D20, keep the button pressed for 6 sec . The eeprom will now be erased, and then all three LEDs are lighted. The LEDs will start to flash yellow-red. This starts FACTORY MODE!

To calibrate 4-20 mA input signal

- Apply 4.0 mA input signal and then push the button three (3) times until all LEDs are lighted. The LEDs will now start flash yellow-red again.

Apply 20.0 mA input signal and then push the button three (3) times until all LEDs are lighted.

To calibrate 4-20 mA transmitter output signal

Note! If no transmitter board is installed the LEDs will start flash yellow-yellow and the unit is ready for continued calibration. If there is a transmitter board installed the LEDs will start flash yellow-green.

The feedback transmitter output signal on pin 9 and 10 will now follow the input
signal instead of the position. Apply 4.0 mA input signal. Measure the output signal and adjust the input signal up/down until the output signal is 4.0 mA . Push the button three times until all LEDs are lighted. The unit will now start to flash yellow-green again.

The output signal on pin 9 and 10 will continue to follow the input signal instead of the position. Apply 20.0 mA input signal. Measure the output signal and adjust the input signal up/down until the output signal is 20.0 mA . Push the button three times until all LEDs are lighted.

The LEDs will start flash yellow-yellow and the unit is ready for continued calibration.

Press the button for 5 sec until the LEDs start alternating, D20 starts to calibrate stroke.

After calibration the unit will start running in normal operation.

11. Trouble shooting

11.1 PMV D20 Normal operation

G	Normal operation.	
\mathbf{Y}	Valve fully closed or open "Cut off" enabled.	

11.2 PMV D20 error codes

An unsuccessful calibration is indicated by the LED:s. The type of error is shown by the flash sequence.

Error code	Probable Cause	Action
R (Alarm)	Deviation between set value and valve position.	

Calibration

R G (No movement)	No air supply or shaft do not move.	Check air supply Check shaft movement.
R Y G	Pot not calibrated.	Calibrate the pot.
R G R R R G	Hallsensor value too low.	
R Y R	Hallsensor span too low.	Check hallsensor connection.
Y R Y G	Unit in Factory Mode.	Calibrate 4-20 mA input signal.
Y	$4-20$ mA feedback installed.	Calibrate output.

11.3 PMV D20 symptoms and solutions

Failure	Probable Cause	Corrective action
No LED is flashing.	Current source below 3,6 mA .	Verify current source supplies at least 3,6 mA. Check wiring for correct polarity.
Valve position reading is not what is expected.	Stem position sensor mounting is off 180 degrees. D20 not calibrated.	Reposition sensor. Tight shutoff MPC (Minimum position cutoff) is active.
No action.		
D20 goes in wrong direction.	Calibrate D20.	
D20 is oscillating.		Change direction (Section 9.4).
D20 is responding slow.		Decrese gain (Section 9.6).

12. Spare parts

POS	PMV P/N	Description Remarks
		Housing N/A
1	31947	Lever arm set
2	30116	Potentionmeter assy. Compl
3	D2-AS5D	Shaft D-type Linear, incl nut
3	D2-AS5N	Shaft VDINDE 3845 Rotary
4	D2-SP50 STD	Air relay assy. Ind. O-rings, screws, standard temp.
4	D2-SP50 LT	Air relay assy. Ind. O-rings, screws, low temp.
5	7-SP80 1X	Electronics
5	7-SP80-I 1X	Electronics, Intrinsically Safe EEx ia
5	7-SP80-H 1H	Electronics, HART HART
5	7-SP80-I-H 1H	Electronics, HART Intrinsically Safe EEx ia, Hart
7	30125	Indicator, flat assy. Complete
8	D2-SP17	Indicator, dome style assy. Complete
9	7-SP25B	Front cover, no indicator, black, ind. screws
11	7-SP25BI	Front cover, for indicator/dome, black, ind. screws
12	7-SP25	Inner cover assy.
14	3-As81T	4-20 mA transmitter only
14	3-As81M	Mechanical switches assy. comp (incl. cams, screws)
14	3-As81P	Proximity switches assy. compl.
14	3-As81N	P+F NJ2-V3-N sensors assy. compl.
14	3-As81D4	P+F SJ2 S1N sensors assy. compl.
14	3-As81D5	P+F SJ2 SN sensors assy. compl.
14	3-As81D6	P+F SJ2N sensors assy.comp.
15	D2-SP40	Gauge block B 1/4" NPT, 1/4" NPT, 1/8" NPT, no gauges
15	D2-SP40	Gauge block C 1/4" NPT, 1/4" NPT, 1/8" G, no gauges
15/16	D2-SP40	Gauge block B 1/4" NPT, 1/4" NPT, 1/8" NPT, 1 gauge (SS/brass)
15/16	D2-SP40	Gauge block C 1/4" NPT, 1/4" NPT, 1/8" G, 1 gauge (SS/brass)
15/16	D2-SP40	Gauge block B 1/4" NPT, 1/4" NPT, 1/8" NPT, 2 gauges (SS/brass)
15/16	S2-SP40	Gauge block C 1/4" NPT, 1/4" NPT, 1/8" G, 2 gauges (SS/brass)
17	30144	Flowtop mounting kit incl. O-ring, screws
18	30145	VDI/VDE 3847 mounting assy. incl. O-rings, screws
19	30395	Double acting module incl. 2xGauges
21	30738	Plug and cable gland kit, black
	30737	Seal and O-ring kit
	30135	Screw and washer kit

Palmstierna International AB

Korta Gatan 9
SE-17154 Solna
SWEDEN
Tel: +46 (0) 855510600
Fax: +46 (0) 855510601
E-mail: infopmv@flowserve.com
www.pmv.nu

Germany

Flowserve
Sperberweg 16
D-41468 Neuss
GERMANY
Tel: +49 (0) 21317957480
Fax: +49 (0) 21317957499
E-mail: pmvgermany@flowserve.com
UK
Flowserve
Abex Road
Newbury, Berkshire, RG14 5EY
UK
Tel: +44 (0) 163549400
Fax: +44 (0) 163536034
E-mail: pmvukinfo@flowserve.com

Italy

Flowserve Spa
Via Prealpi, 30
20032 Cormano (Milano)
ITALY
Tel: +39 (0) 2663251
Fax: +39 (0) 26151863
E-mail: infoitaly@flowserve.com

USA, Mexico
PMV-USA
1440 Lake Front Circle, Unit 160
The Woodlands, TX 77380
USA
Tel: +1 2812927500
Fax: +1 2812927760
E-mail: pmvusa@flowserve.com

Canada

Cancoppas Limited
2595 Dunwin Drive, Unit 2
Mississuga, Ont L5L 3N9
CANADA
Tel: +1 9055696246
Fax: +1 9055696244
E-mail: controls@cancoppas.com

Asia Pacific Headquarters

Flowserve Pte Ltd.
No. 12 Tuas Avenue 20
REPUBLIC OF SINGAPORE 638824
Tel: +65 (0) 68798900
Fax: +65 (0) 68624940

South Africa

Flowserve
Unit 1, 12 Director Road
Spartan Ext. 2
1613 Kempton Park, Gauteng
SOUTH AFRICA
Tel: +27 (0) 113973150
Fax: +27 (0) 113975300

The Netherlands

Fabromatic BV
Rechtzaad 17
4703 RC Roosendaal
THE NETHERLANDS
Tel: +31 (0) 306771946
Fax: +27 (0) 306772471
E-mail: fcbinfo@flowserve.com

China

Flowserve
Hanwei Building
No. 7 Guanghua Road
Chao Yang District
100004 Beijing
CHINA
Tel: +86 (10) 65611900
Fax: +86 (10) 65611899

